Exact N - vortex solutions to the Ginzburg - Landau equations for κ = 1 / √ 2

نویسنده

  • A. V. Efanov
چکیده

The N-vortex solutions to the two-dimensional Ginzburg-Landau equations for the κ = 1/ √ 2 parameter are built. The exact solutions are derived for the vortices with large numbers of the magnetic flux quanta. The size of vortex core is supposed to be much greater than the magnetic field penetration depth. In this limiting case the problem is reduced to the determination of vortex core shape. The corresponding nonlinear boundary problem is solved by means of the methods of the theory of analytic functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Superconductivity and Antiferromagnetism

We study the structure of symmetric vortices in a Ginzburg–Landau model based on S. C. Zhang’s SO(5) theory of high temperature superconductivity and antiferromagnetism. We consider both a full Ginzburg–Landau theory (with Ginzburg–Landau scaling parameter κ < ∞) and a κ → ∞ limiting model. In all cases we find that the usual superconducting vortices (with normal phase in the central core regio...

متن کامل

Vortex Motion Law for the Schrödinger-Ginzburg-Landau Equations

In the Ginzburg-Landau model for superconductivity a large Ginzburg-Landau parameter κ corresponds to the formation of tight, stable vortices. These vortices are located where an applied magnetic field pierces the superconducting bulk, and each vortex induces a quantized supercurrent about the vortex. The energy of large-κ solutions blows up near each vortex which brings about difficulties in a...

متن کامل

Giant vortices in the Ginzburg-Landau description of superconductivity

Recent experiments on mesoscopic samples and theoretical considerations lead us to analyze multiply charged (n > 1) vortex solutions of the GinzburgLandau equations for arbitrary values of the Landau-Ginzburg parameter κ. For n ≫ 1, they have a simple structure and a free energy F ∼ n. In order to relate this behaviour to the classic Abrikosov result F ∼ n2 when κ → +∞, we consider the limit wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997